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We calculate the diffusion constant for two-state brownons when the change 
of state is not, as usually assumed, Markovian. The correction to the non- 
interchanging species result is found to be exactly expressible in terms of the 
Laplace transforms of the sojourn time densities. 

KEY W O R D S :  Brownian motion; diffusion process; sojourn time distribu- 
tion. 

A brownon is defined to be a particle moving by Brownian motion; more 
specifically, it is a particle or molecule whose motion is described by a 
Langevin equation. A multistate brownon is a particle capable of existing 
in more than one state, each state being characterized by different parameters 
in the Langevin equation. The theory of multistate brownons has been 
discussed in several contexts: in connection with motion in a chromato- 
graphic column, a-s) in connection with chemical exchange as related to 
N M R  measurements, (9) and with regard to the calculation of transport 
coefficients in electrolyte solutions. ~1~ In all of these analyses it is assumed 
that the conversion between states follows first-order kinetics, i.e., the theories 
include an implicit assumption that the probability density for a sojourn in 
any state can be written ke-~L Since exact mechanisms are not always known 
for the exchange of states, it is probable that the simple isomerization scheme 
does not describe all the physical situations of interest. In this note we 
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present the modifications that are necessary when the sojourn in state i is 
described by a general density q~(t) with a finite mean residence time/x~. 
We calculate an expression for the diffusion constant of a two-state 
brownon as a simple example; more complicated models can be handled 
by the same techniques. The mathematical results generalize those of 
Takacs m) for the sojourn time distribution in a two-state semi Markov 
process. 

The starting point of the calculation is the Kubo relation 

D = ~ (v(0) "v(t)) dt (1) 

where v(t) denotes particle velocity at time t. In the absence of an external 
applied force the velocity is assumed to be governed by two Langevin 
equations 

-b + coy = A(t) (2) 

where A(t) is the fluctuating component of the force divided by particle mass, 
and oJ~ = ~/rn~ is the friction constant divided by mass. This model implies 
that the velocity correlation function can be written 

(v(O) �9 v(t)) = [01@12(0)) + 0~(v~(0))] e -~~ (3) 

in which ~- is the cumulative time spent in state 1 during the time t and 0~ is 
the probability that the chosen particle is initially in state i. These probabilities 
are quite generally given by 0~ =/x~/(/~ 1 -t-/x~) in terms of the mean residence 
times. Now let r~(r; t) be the probability density for sojourn time ~ conditional 
on the initial state being i. In terms of these functions, the diffusion constant 
can be expressed without approximation as 

2 o~ 

i = l  

so that we now only need calculate the r~(T; t). In what follows, we use the 
notation 

~ cyo 

r  = ~,(u) du, I'~(t) = ~ i ( t ) / ~ i  , ~bi(t ) = _Pi(u) du (5) 

The function q)i(t)  is the probability that a single sojourn in state i will be 
greater than t and / ' i ( t )  is the equilibrium probability density for the forward 
recurrence time in state i. 
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Expressions for the ri(r; t) can be derived by direct enumeration as in 
the analysis by Friedman and Ben-Naim. (1~ For  rl(r; t) we find 

q( r ;  t) = ~l( t)  $(t - -  r) + I ' l ( r  ) q)~(t - -  r) 

+ ~ ( t  - ~) r~(~') ~ ( ~  - r  d e  
o 

+ [fo ,., fo 
[ (  

• 1_3o q~2(u) ~oe(t - -  r - -  u) du @ "'" (6) 

The first term describes a situation in which the particle remains in state 1 for 
the whole period t, the second is the contribution from the sequence 12, the 
third is from 121, and so on. A similar expression can be written for r2(r; t). 
The important point is that r~(r; t) can be expressed as a series 

q(~; t) = ~ A~(~) B~(t  - -  "0 (7) 
'0,=0 

where the A's and B's are convolution integrals. An individual term appearing 
in Eq. (4) therefore has the form 

,=o ~, 

J = fo dt ~o dr  A(T )e -~B( t -  r)e -~=(~-T) (8) 

If  we denote the Laplace transform of A(t)  by A*(s)  and that for B(t)  by 
B*(s),  then J can be expressed as 

J = A*(%) B*(w2) (9) 

Furthermore, since the A's and B's can be written in terms of convolution 
integrals, the Laplace transforms can be written in terms of products and 
powers of the Laplace transforms of the cpi(t). Specifically, when Eq. (6) is 
substituted into Eq. (4), we find after some manipulation that 

where 

;o ~~ fo * 1 F(o~l, %) (10) dt dr rl(r; t) e -~1~-~(*-~) = - -  ~- 
o J1 /zlo21 

F ( ~ I  ' 0)2)  = [1  - -  q O l * ( ~ l ) ] [ 1  - -  q ~ 2 * ( c % ) ]  1 1 ) (11) 
r 1 
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In similar fashion, the second contribution can be shown to be equal to 
(1/(o2)-  [F(col, o9~)/(/z2o92)], so that 

D : [01 + 02 , 

+ 1-3' <vl~(0)> <v~2(0)> (12) 
/~2r 

The first set of terms in this last equation is the result for a noninter- 
changing set of particles for which the diffusion constant is a weighted average 
of individual diffusion constants. The second term gives the effects of nonzero 
interchange times. As Friedman and Ben-Naim have pointed out, the 
dimensionless terms ~s (=~i /mik i )  for first-order kinetics) are small in 
electrolyte solutions, for which the two-state brownon model might be a 
legitimate description. The exact magnitudes range from approximately 
l0 s to 107 or greater; for typical parameters this implies that the second set 
of terms in Eq. (12) is at least two orders of magnitude less than the first set. 
It is possible that there are chromatographic systems for which the inter- 
change corrections are important, but no estimates of w are available to test 
this possibility. The present theory can be extended without great difficulty 
to brownons with n > 2 states, but the results require many more parameters 
for their specification. 

REFERENCES 

1. J. C. Giddings and H. Eyring, J. Am. Chem. Soc. 59:416 (1956). 
2. J. C. Giddings, J. Chem. Phys. 26:169 (1957). 
3. J. C. Giddings, J. Chem. Phys. 31:1462 (1959). 
4. J. C. Giddings, J. Chromatogr. 3:443 (1960). 
5. K. J. Mysels, J. Chem. Phys. 24:371 (1961). 
6. T. A. Bak, Contributions to the Theory of Chemical Kinetics. Munksgaard, Copenhagen, 

1959. 
7. D. A. McQuarrie, J. Chem. Phys. 38:437 (1963). 
8. G. H. Weiss, Sep. Sci. 5:51 (1970). 
9. S. Meiboom, J. Chem. Phys. 34:1 (1961). 

10. H. L. Friedman and A. Ben-Naim, J. Chem. Phys. 48:120 (1968). 
11. L. Takacs, Acta Math. Hung. 8:169 (1957). 


